Probing the mechanism of a fungal glycosyltransferase essential for cell wall biosynthesis. UDP-chitobiose is not a substrate for chitin synthase.
نویسندگان
چکیده
Chitin synthase is responsible for the biosynthesis of chitin, an essential component of the fungal cell wall. There is a long-standing question as to whether "processive" transferases such as chitin synthase operate in the same manner as non-processive transferases. The question arises from analysis of the polysaccharide structure--in chitin, for instance, each sugar residue is rotated approximately 180 degrees relative to the preceding sugar in the chain. This requires that the enzyme account for the alternating "up/down" configuration during biosynthesis. An enzyme with a single active site, analogous to the non-processive transferases--would have to accommodate a distorted glycosidic linkage at every other synthetic step. An alternative proposal is that the enzyme might assemble the disaccharide donor, addressing the "up/down" conformational problem prior to polymer synthesis. We present compelling evidence that this latter hypothesis is incorrect.
منابع مشابه
A Structural and Biochemical Model of Processive Chitin Synthesis*
Chitin synthases (CHS) produce chitin, an essential component of the fungal cell wall. The molecular mechanism of processive chitin synthesis is not understood, limiting the discovery of new inhibitors of this enzyme class. We identified the bacterial glycosyltransferase NodC as an appropriate model system to study the general structure and reaction mechanism of CHS. A high throughput screening...
متن کاملChitin synthase in encysting Entamoeba invadens.
Although the cyst wall of Entamoeba invadens contains chitin, synthesis of this structural polymer during encystation has not been described before. Here we report that conditions which stimulate encystation of the parasite lead to increased chitin synthase (ChS) activity, measured by incorporation of [3H]GlcNAc ([3H]N-acetylglucosamine) from UDP-GlcNAc. The radiolabelled product was precipitab...
متن کاملGenetic and structural validation of Aspergillus fumigatus UDP-N-acetylglucosamine pyrophosphorylase as an antifungal target
The sugar nucleotide UDP-N-acetylglucosamine (UDP-GlcNAc) is an essential metabolite in both prokaryotes and eukaryotes. In fungi, it is the precursor for the synthesis of chitin, an essential component of the fungal cell wall. UDP-N-acetylglucosamine pyrophosphorylase (UAP) is the final enzyme in eukaryotic UDP-GlcNAc biosynthesis, converting UTP and N-acetylglucosamine-1-phosphate (GlcNAc-1P)...
متن کاملAspergillus fumigatus Trehalose-Regulatory Subunit Homolog Moonlights To Mediate Cell Wall Homeostasis through Modulation of Chitin Synthase Activity
Trehalose biosynthesis is found in fungi but not humans. Proteins involved in trehalose biosynthesis are essential for fungal pathogen virulence in humans and plants through multiple mechanisms. Loss of canonical trehalose biosynthesis genes in the human pathogen Aspergillus fumigatus significantly alters cell wall structure and integrity, though the mechanistic link between these virulence-ass...
متن کاملPhosphorylation regulates polarisation of chitin synthesis in Candida albicans.
The ability to undergo polarised cell growth is fundamental to the development of almost all walled organisms. Fungi are characterised by yeasts and moulds, and both cellular forms have been studied extensively as tractable models of cell polarity. Chitin is a hallmark component of fungal cell walls. Chitin synthesis is essential for growth, viability and rescue from many conditions that impair...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Organic & biomolecular chemistry
دوره 1 1 شماره
صفحات -
تاریخ انتشار 2003